BST 261: Data Science |l

L ecture 3

Feedforward networks (MLPs) in
Python with Keras, Regularization

Santiago Romero-Brufau
Harvard T.H. Chan School of Public Health
Spring 2

Recipe of the day

https://youtu.be/JceGMNGT7rpU

Authentic Tortilla de patatas
(Spanish Omelette)

https://youtu.be/JceGMNG7rpU

€6

“It's amazing what you can
accomplish when you do not care
who gets the credit.”

Harry S. Truman

3

MLPs In
Python/Keras

MNIST Data Example

The MNIST data set includes handwritten
digits with corresponding labels

Training set: 60,000 images of handwritten

digits and corresponding labels
Each digit is represented as a 28 x 28
matrix of grayscale values 0 - 255
The entire training setis stored in a
3D tensor of shape (60000, 28, 28)
The corresponding image values are
stored as a 1D tensor of values0-9

Testing set: 10,000 images with the same
set up as the training set

label =5

M

label = 2

5

label = 3

N B

m cee
"
<L
S

label = 4 label =1

L
~

o
o
o
Il

w

label =1

3

label = 6

Training Data

label = 9

-~

o
o
o
I

IS

X,

label =1

I
o
_09
©

1

N
>
4

60,000 images

[28 pixels

28 pixels

http://yann.lecun.com/exdb/mnist/

MNIST Data Example

Data wrangling

We’ll get into RGB images later, but for grayscale images, we need to first transform the matrix of

values into a vector of values, and then normalize them to be between 0 and 1. It is not strictly

necessary to normalize your inputs, but smaller numbers help speed up training and avoid

getting stuck in local minima. This also ensures the gradients don’t “explode” or “vanish”
Reshape each image from a 28 x 28 matrix of grayscale values 0 - 255 to a vector of length
28*28 =784 of values 0 - 1 (divide each by 255)

We now have 10 classes (categories; the digits 0-9)
We need to have multiclass labels that tell the network which digit the example is
Reshape each corresponding image label to a vector of length 10 of values O or 1
Example: the digit 3 would be represented as [0, 0,0, 1,0, 0,0, 0, 0, 0]
You can think of this as “dummy coding” the labels

Activation and Loss Function Choices

Task

Last-layer activation

Loss function

between 0 and 1

Binary classification sigmoid Binary cross-entropy
Multiclass, single-label softmax Categorical cross-entropy
classification

Multiclass, multilabel sigmoid Binary cross-entropy
classification

Regression to arbitrary None Mean square error (MSE)
values

Regression to values sigmoid MSE or binary cross-

entropy

Softmax function softmax(2); = 5=, e

We could use argmax(), which would select the label with the highest “score”, assignita 1,
and everything else would be a zero.

Problem: the network wouldn’t get “partial credit”

Softmax gives the network “partial credit” by distributing it’s guess into the different options
It doesn’t distribute it evenly, it distributes it exponentially

Softmax function softmax(2); = 5=, e

Softmax units are used as outputs when predicting a discrete variable y with j possible values

In this setting, which can be seen as a generalization of the Bernoulli distribution, we need to
produce a vector ¥ with 9; = P(y = i|x)

We require that each ¥: lie in the [0, 1] interval and that the entire vector sums to 1
We first compute 2 = wlz + b asusual
Here, 2 = log[P(y = i|z)] represents an unnormalized log probability for class i

The softmax function then exponentiates and normalizes z to obtain¥

Categorical cross-entropy

In this case we want to maximize

log[P(y = i; z)] = log[softmax(z) — log Z exp(z;)

The first term shows that the input always has a direct contribution to

the loss function

Because l"’g;e”’p(’zﬂ') ~Ma%i%i the negative log-likelihood loss function

always strongly penalizes the most active incorrect prediction

10

MNIST Data Example

Network Architecture

Let’s start with 2 layers:
Hidden layer will have 512 hidden units and the relu activation function

Output layer with 10 units (one for each possible digit) and the softmax activation function (this
produces a vector of length 10, where each element is a probability between 0 and 1 of the image
being classified as that digit)

Example: [0, 0.3,0,0,0,0,0,0.7, 0, 0] - the highest probability corresponds to a label of 7, so the
network would classify thisimageasa 7

rmsprop optimization algorithm
categorical_crossentropy loss function
accuracy performance measure (the proportion of times the correct class is chosen)

11

MNIST Data Example

Colab link

cO & Lablipynb ¢
File Edit View Insert Runtime Tools Help

Step 1 _ [I’ Open in playground]

¢ Lablipynb i+
CO PY
File Edit View Insert Runtime Tools Help

Step2 _ + Code + Text # Copyto Drive]

https://colab.research.google.com/drive/1ocFr7rgT-_mmr1VY_vWxC-b3PSvwVzBu?usp=sharing

IMDb Data Example f IMDb

The IMDb data set is a set of movie reviews that have been labeled as either positive or negative,
based on the text content of the reviews

Training set: 25,000 either positive or negative movie reviews that have each been turned into
a vector of integers
We'll see how to actually do this later in the course
Each review can be of any length
Only the top 10,000 most frequently occurring words are kept i.e. rare words are
discarded
Each review includes a label: 0 = negative review and 1 = positive review

Testing set: 25,000 either positive or negative movie reviews, similar to the training set

13

https://www.kaggle.com/utathya/imdb-review-dataset

IMDDb Data Example

Data Wrangling

Each review is of a varying length and is a list of integers - we need to turn this
into a tensor with a common length for each review
Create a 2D tensor of shape 25,000 x 10,000

25,000 reviews and 10,000 possible words
Use the vectorize_sequences function to turn a movie review list of integers into
a vector of length 10,000 with 1s for each word that appears in the review and 0s

for words that do not
The labels are already 0s and 1s, so the only thing we need to do is make them

float numbers

14

Activation and Loss Function Choices

Task

Last-layer activation

Loss function

between 0 and 1

Binary classification sigmoid Binary cross-entropy
Multiclass, single-label softmax Categorical cross-entropy
classification

Multiclass, multilabel sigmoid Binary cross-entropy
classification

Regression to arbitrary None Mean square error (MSE)
values

Regression to values sigmoid MSE or binary cross-

entropy

15

IMDDb Data Example

Network Architecture

3 layers
2 hidden layers and 1 output layer
Hidden layers have 16 hidden units each and a relu activation function
Output layer has 1 unit (the probability a review is positive)
Sigmoid activation function
rmsprop optimization algorithm
binary_crossentropy loss function
accuracy performance measure (proportion of times the correct class is
chosen)

16

IMDDb Data Example

Colab link

17

https://colab.research.google.com/drive/1ocFr7rgT-_mmr1VY_vWxC-b3PSvwVzBu?usp=sharing

Regularization

Regularization

One of the biggest problems with neural networks is overfitting.
Regularization schemes combat overfitting in a variety of different ways

A perceptron represents the following optimization problem:
a'rgminWl(yr f('X))

19

Regularization

One way to regularize is to introduce penalties and change

argmingy I(y, f(X))
to
argming, l(y, f(X)) + AR(W)

where R(W) is often the L1 or L2 norm of W. These are the well-known ridge
and LASSO penalties, and referred to as weight decay by the neural net
community.

20

L2 Regularization

We can limit the size of the L2 norm of the weight vector:

argminy, I(y, f(X)) + X [|[W][,
where

Wiy = 3251 wi

We can do the same for the L1 norm. What do the penalties do?

21

Shrinkage

The L1 and L2 penalties shrink the weights to or towards 0.

0 100 200 300 400
I I L 1 1

Standardized Coefficients

-200
|

100 200 300 400

-100 0

Standardized Coefficients

— Income
- Limit
------ Rating
Student

20 50 100 200

-300

Te+04

22

Stochastic Regularization

Why is this a good idea?
One of the most popular ways to do this is dropout

Given a hidden layer, we are going to set each element of the hidden
layer to 0 with probability p each SGD update.

(a) Standard Neural Net (b) After applying dropout.

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-
learning-74334da4bfc5

23

Stochastic Regularization

One way to think of this is the network is trained by bagged versions of the
network.

Bagging reduces variance.

Others have argued this is an approximate Bayesian model

Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning

6 [stat. ML] 4 Oct 2016

Deep learning tools have gained tremendous at-
tention in applied machine leaming. However
such tools for regression and classification do
not capture model uncertainty. In compari-
son, Bayesian models offer a mathematically
grounded framework to reason about model un-
certainty, but usually come with a prohibitive
computational cost. In this paper we develop a
new theoretical framework casting dropout train-
ing in deep neural networks (NNs) as approxi-
mate Bayesian inference in deep Gaussian pro-
cesses. A direct result of this theory gives us
tools to model uncertainty with dropout NNs —
extracting information from existing models that
has been thrown away so far. This mitigates
the nroblem of reoresentine uncertainty in deen

Yarin Gal YG2T9@CAM. AC. UK
Zoubin Ghahramani ZG201 @ CAM.AC.UK
University of Cambridge

Abstract With the recent shift in many of these fields towards the use

of Bayesian uncertainty (Herzog & Ostwald, 2013; Trafi-
mow & Marks, 2015; Nuzzo, 2014), new needs arise from
deep learning tools.

Standard deep learning tools for regression and classifica-
tion do not capture model uncertainty. In classification,
predictive probabilities obtained at the end of the pipeline
(the softmax output) are often emmoneously interpreted as
model confidence. A model can be uncertain in its predic-
tions even with a high softmax output (fig. 1). Passing a
point estimate of a function (solid line la) through a soft-
max (solid line 1b) results in extrapolations with unjustified
high confidence for points far from the training data. =~ for
example would be classified as class 1 with probability 1.
However, passing the distribution (shaded area 1a) through
a softmax (shaded area 1b) better reflects classification un-
certainty far from the trainine data,

24

Some intuition about stochastic regularization

Imagine you were training several NN (on different subsets of the data and
with different weight initializations), and then taking the average. We would
force the resulting ensemble of networks to find patterns that are fairly

consistent.

25

Stochastic Regularization

Many have argued that SGD itself provides regularization

Journal of Machine Learning Research 18 {2017) 1-35 Submitted 4/17; Revised 10¥17; Published 12/17

Stochastic Gradient Descent as Approximate Bayesian Inference

Stephan Mandt STEPHAN.MANDT@ GMAIL.COM
Data Science Institute SelectorGadget

Departmeni of Computer Science Has access to this site

Columbia University

New York, NY 10025, USA

Matthew D. Hoffman MATHOFFM @ ADOBE.COM
Adobe Research

Adobe Systems Incorporated

601 Townsend Street

San Francisco, CA 94103, USA

David M. Blei DAVID.BLEI@ COLUMBIA.EDU
Department of Statistics

Department of Computer Science

Columbia University

New York, NY 10025, USA

Editor: Manfred Opper

Abstract

Stochastic Gradient Descent with a constant 1 ing rate (SGD) si a Markov chain
with a stationary distribution. With this perspective, we derive several new results. (1) We show
that constant SGD can be used as an approximate Bayesian posterior inference algorithm. Specif-
ically, we show how to adjust the tuning parameters of constant SGD to best match the stationary
distribution to a posterior, minimizing the Kullback-Leibler divergence between these two distri-

Initialization Regularization

The weights in a neural network are given random values initially.
There is an entire literature on the best way to do this initialization
Normal
Truncated Normal
Uniform
Orthogonal
Scaled by number of connections
Etc.
Try to “bias” the model into initial configurations that are easier to train

27

Initialization Regularization

A popular way is to do transfer learning

Train the model on an auxiliary task Use final weight values from previous
where lots of data is available ——> task asinitial values and “fine tune”
on primary task

28

IMDb Example

We saw overfitting in the IMDb example:

Loss

0.7

06

05

04

03

0.2

01

0.0

- Training Loss
—— Validation Loss

25

50

75

10.0
Epochs

125

15.0

175

20.0

1.00

0.95

0.90

Accuracy

0.85

0.80

—— Training Accuracy
—— Validation Accuracy

25 50 75 100 125 150 175 20.0
Epochs

29

IMDDb EXx

We saw overfitti

07 [— Training Loss

06 —— Validation Loss

05

04

Loss

03

02

01

0.0
25 5.0 75

Senior data scientist hearing about how someone’s deep
learning model has achieved 98% accuracy with training
data.

11:34 PM - Jan 20, 2021 - Twitter for iPhone

—— Training Accuracy
—— Validation Accuracy

125

15.0

175

20.0

30

How do we make this model better?

Regularization

1. Reduce network size
2. Weight regularization
3. Dropout

Back to the IMDb colab notebook

31

https://colab.research.google.com/drive/1ocFr7rgT-_mmr1VY_vWxC-b3PSvwVzBu?usp=sharing
https://colab.research.google.com/drive/1ocFr7rgT-_mmr1VY_vWxC-b3PSvwVzBu?usp=sharing

Regularization: reducing network size

When we are battling overfitting, one option is to simplify the model. Let’s
compare the performance we get from a simpler model. Here we have
simplified the model by reducing the number of hidden units in each hidden

layer.
1 # Original model
2 model = keras.Sequential([
3 layers.Dense(1l6, activation='relu'),
4 layers.Dense(1l6, activation='relu'),
5 layers.Dense(l, activation='sigmoid')
6 1)
7
8 # Reduced model
9 model = keras.Sequential([
10 layers.Dense(4, activation='relu'),
11 layers.Dense(4, activation='relu'),
12 layers.Dense(1l, activation='sigmoid')

13 1)
32

Regularization: reducing network size

0.7

0.6

0.4

0.3

- Original model

25

Simpler model

5.0

-

10.0
Epochs

12.5

15.0

17.5

20.0

The smaller network
performs better than the
original model - it starts
to overfit at epoch 10
rather than epoch 6.
These values are when
the validation loss starts
to increase.

33

Regularization: weight regularization

1 # L2 model

2 12 model = keras.Sequential([

3 # Layer 1 (Hidden layer)
layers.Dense(1l6, activation='relu',

The only change is adding
an argumentinside of
each of the hidden layers

kernel regularizer = keras.regularizers.12(0.001)), ¢———
Layer 2 (Hidden layer)
layers.Dense(16, activation='relu',
kernel regularizer
Layer 3 (Output layer)
10 layers.Dense(l, activation='sigmoid')
11 1)

keras.regularizers.12(0.001)), ¢

O 00 < o oW

34

Regularization: weight regularization

0.7

0.6

0.4

0.3

- QOriginal model
L2 model

The L2-regularized
model is much more
resistant to
overfitting - the
validation loss starts
to increase at a much
slower rate

35

Regularization: adding dropout

1#

Dropout model

2 dmodel = keras.Sequential(]

3

0 N o U W

11
12
13 1)

Layer 1 (Hidden layer)
layers.Dense(l6, activation='relu'),
Dropout layer

layers.Dropout(0.5), ——— O

Layer 2 (Hidden layer)
layers.Dense(l6, activation='relu'),
Dropout layer

layers.Dropout(0.5), <{——————

Layer 3 (Output layer)
layers.Dense(1l, activation='sigmoid')

The 0.5 indicates a 50%
probability of dropping out a
unit. Typically, 20% is used in
practice but you can try
different values and see what
performs best.

36

Regularization: adding dropout

0.7

0.6

04

0.3

- QOriginal model
Dropout model

2.5

5.0

7.5

10.0
Epochs

125

15.0

17.5

20.0

The dropout model is
slightly better than the
original model (in terms
of overfitting) but does
not control for overfitting
as well as the L2 network

37

	Slide 1: BST 261: Data Science II Lecture 3 Feedforward networks (MLPs) in Python with Keras, Regularization Santiago Romero-Brufau Harvard T.H. Chan School of Public Health Spring 2
	Slide 2: Recipe of the day
	Slide 3
	Slide 4
	Slide 5: MNIST Data Example
	Slide 6: MNIST Data Example
	Slide 7: Activation and Loss Function Choices
	Slide 8: Softmax function
	Slide 9: Softmax function
	Slide 10: Categorical cross-entropy
	Slide 11: MNIST Data Example
	Slide 12: MNIST Data Example
	Slide 13: IMDb Data Example
	Slide 14: IMDb Data Example
	Slide 15: Activation and Loss Function Choices
	Slide 16: IMDb Data Example
	Slide 17: IMDb Data Example
	Slide 18
	Slide 19: Regularization
	Slide 20: Regularization
	Slide 21: L2 Regularization
	Slide 22: Shrinkage
	Slide 23: Stochastic Regularization
	Slide 24: Stochastic Regularization
	Slide 25: Some intuition about stochastic regularization
	Slide 26: Stochastic Regularization
	Slide 27: Initialization Regularization
	Slide 28: Initialization Regularization
	Slide 29: IMDb Example
	Slide 30: IMDb Example
	Slide 31: How do we make this model better?
	Slide 32: Regularization: reducing network size
	Slide 33: Regularization: reducing network size
	Slide 34: Regularization: weight regularization
	Slide 35: Regularization: weight regularization
	Slide 36: Regularization: adding dropout
	Slide 37: Regularization: adding dropout

